United States Patent

US009483329B2

(12) (10) Patent No.: US 9,483,329 B2
Ritter et al. 45) Date of Patent: Nov. 1, 2016
(54) CATEGORIZING AND MODELING 2003/0105887 Al* 6/2003 COX .ccooovvvvviinniiiiinns GOG6F 8/20
INTEGRATION ADAPTERS 719/328
2006/0101474 Al* 5/2006 Magown GOG6F 9/5027
. N .) 719/315
(71) Applicants: Daniel Ritter, I.{eldelberg (DE); 2006/0248145 Al* 11/2006 Karmakar ... HO041. 69/163
Manuel Holzleitner, Karlsruhe (DE) 709/206
2007/0067266 Al* 3/2007 Lomet GOG6F 17/30864
(72) Inventors: Daniel Ritter, Heidelberg (DE); 2008/0059944 A1* 3/2008 Patterson GOGF 8/10
Manuel Holzleitner, Karlsruhe (DE) 717/104
2009/0164558 Al* 6/2009 Hofmann GO06Q 10/06
. 709/203
(73) Assignee: SAP SE, Walldorf (DE) 2011/0265060 Al* 10/2011 Fritzsche GOGF 8/10
717/104
(*) Notice: Subject to any disclaimer, the term of this 2012/0030689 AL* 2/2012 Li oooroiocrinn, GO6F 9/541
patent is extended or adjusted under 35 2012/0089534 AL 492002 Lichi | 719/313
1ebig et al.
US.C. 154(b) by 0 days. 2013/0036427 AL* 2/2013 Chen ..o GOGF 9/546
719/312
(21) Appl. No.: 14/617,059 2014/0068635 Al 3/2014 Holzleitner et al.
2014/0359554 Al 12/2014 Ritter et al.
(22) Filed: Feb. 9, 2015 2014/0372428 Al 12/2014 Mathis et al.
2014/0372488 Al 12/2014 Ritter et al.
(65) Prior Publication Data 2015/0113020 AL* 4/2015 Behr .occoooooiirrrvnnnen. GO6F 8/10
707/792
US 2016/0232042 A1 Aug. 11, 2016
(51) Int.Cl OTHER PUBLICATIONS
GOGF 9/54 (2006.01) U.S. Appl. No. 14/335,502, filed Jul. 18, 2014, Ritter et al.
GO6F 9/44 (2006.01) U.S. Appl. No. 14/458,824, filed Aug. 13, 2014, Ritter et al.
(52) US. CL
CPC ...cceeveuen GOG6F 9/541 (2013.01); GO6F 8/10 * cited by examiner
(2013.01); GOG6F 8/20 (2013.01); GOGF 9/546
(2013.01) Primary Examiner — Charles E Anya
(58) TField of Classification Search (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
CPC GOG6F 9/541; GOG6F 9/546; GOGF 8/10;
GO6F 8/20 57 ABSTRACT
See application file for complete search history. The disclosure generally describes computer-implemented
methods, software, and systems, including a method for
(56) eferences Cite generating and storing adapter characterization information.
U.S. PATENT DOCUMENTS Adapter-related information associated with an adapter is
o received. Communication patterns associated with the
8,543,653 B2 9/2013 Bhatt et al. adapter are determined. Quality-of-service patterns are
8,655,989 B2 2/2014 Ritter et al. applied to the communication patterns. An adapter flow is
8,061,107 B2 2/2014 Hoffmann et al. configured for the adapter. A visualization of the adapter
?;32’%‘ g% gggij Egg ZE g%' flow for the adapter is provided. Characterization informa-
8850005 B2 9/2014 Bhatt et al. tion determined for the adapter is stored.
2003/0037174 Al* 2/2003 Lavin ... GOG6F 9/541
719/313 13 Claims, 17 Drawing Sheets
1200
1202 NFORMATION ASSOGIATED
'WITH AN ADAPTER
i
N e
WITH THE ADAPTER
I
1206~ APPLY QUALITY-OF-SERVICE

PATTERNS TO THE
COMMUNICATION PATTERNS

CONFIGURE AN ADAPTER
FLOW FOR THE ADAPTER

PROVIDE A VISUALIZATION
OF THE ADAPTER FLOW
FOR THE ADAPTER
I
STORE CHARACTERIZATION
INFORMATION DETERMINED
FOR THE ADAPTER

1208

1210~

1212

US 9,483,329 B2

Sheet 1 of 17

Nov. 1, 2016

U.S. Patent

o~

HOSS300Ud

/
zel o\ﬂ

JOVAHILNI

JINACK
NOILVIINNWAOD

/
0Cl w\:

JINAOK
NOILYIN3STdd

NOILVOIddV
IN3ITO

\ 30IA3d
Ll N3O

;

c0l

A
001

\ (s)301n3a
N INTmD
\zol

/ SWALSAS
TYNYILXI

901

VI ‘DIA
syasn
601
y ozl YITONVH
/ 1s3no3y
’ zzl
@ ¥0SSI00Md | otk &
3INAOW
8el NOILYZITYNSIA
AYOWIW 3INAOW
MO14 Y3 Ldvay
aym
. 6Ll)
- IINAOW OIS
NOILYIWHOANI
NOILVZIYILOVHYHO 30 ALITYND
IINAOW N¥3LLYd
LLL NOILYOINNWINOD
NOILYWYOANI mr\) €l
voL | ¥3Ldvay /
3INAON
183nD3Y ¥3sn
i HIAYIS NOILYIddY
.
HIAN3S ZL1

US 9,483,329 B2

Sheet 2 of 17

Nov. 1, 2016

U.S. Patent

\,\l}
—
_ N {TYNY3LNI) {(TYNH3LNI) N _
- 1 H3ldvay e e HIALAVAY YT 1
— G| 301S- 4N L 30IS-4IANTS el —
8Ll _ \ _ _ 4 Gl * S _ _ / _ 01
N0 | | T (wena) | | | | $53004d el ||| tvvana || R30S
W3LSAS INIONT | NOILVHOILNI _ INIONT W3LSAS
NOUYOIdY ot | onsszooud [« _ § | HH onsszooud [NOILYOdGY
P4aLdYay | | /H3LdVaY
| |3asvanaomy | | | | | | | | sasyaanas | |
NION3 ¥3Ldva | 3IWIINNY WALSAS NOILYNOIINI | I9N3 ¥3LdVQ
S0 | | | nEssem ||| 39 |
[[
,_ | | _.
A0Td30 ANV 3LV¥ANTD
He\9 T30ON HdVY9 T3A0W (Hdv¥9) TIAON LS9y
WOISAHd OL ¥31dvay WII90T
A01d30 ONY TWOISAHA WO / MO
A9VHOVd 3000 INILNNY 1701907 HOdA OL WHOASNYAL N3LdVaY
J1VHAND NOILYWHO4SNVYL +NOILdI¥DS3a
qaSYE-TINY Alddv ¥31dvay 3SHvd
/ /' NVHOT0OLYITdWOD) N
99} ¥l momsaivay 29 09} 891
p . .
AT d1 ‘DId 0G1

US 9,483,329 B2

Sheet 3 of 17

Nov. 1, 2016

U.S. Patent

¢ DA
80¢ 80¢
N Ole 902 Vv /
1 f \ — I Yy
(sees) (seeIND " [vy vov | | (NOLLYZINVOXO) -
NOLLVOddy |+ i NALSAS = MHOMLIN i INBLSAS NOILYDITddY
" NOILYHOIINI | N
e YoV _ qzq : /
ano1o/seed N _ MHOMLIN ANVAINOD
1 | 01z
_
% L Y
MHOML3N MHOML3N MHOMLIN Tcw
T [_
_ [
vev gza | lgzg VeV vev
) \ A |
(sees) |, (Lo1'We)
NOILVJI1ddY $39I1A3Q 144 (/
_ ' 00¢

US 9,483,329 B2

Sheet 4 of 17

Nov. 1, 2016

U.S. Patent

[T DI4

6 DId

411 'DIA | VIT DI

€6 DI V6 DId

¢ ‘DIA
V1Va AM1INT 1AL
Q3ZIYWHON 908 V1Va AYLINITAL 80€ (SNONOYHONASY)
an3s N 3AI303Y (LIbW) SNININD I9YSSIN
901€ qolLe aL S3ALYDIANI LIDW
NOILVZITYWNON

SIS INIL - —-—r -==7

19naNoo I

_ = eglLe I

4 |

wiou _ W B |

—— L ___ 8
al a Q2 J\
=" i
(43aN3s) 301IA3A
POLE 20€ -20¢
0€ X
00¢

US 9,483,329 B2

Sheet 5 of 17

Nov. 1, 2016

U.S. Patent

¥ 'DId
— T o~ T
JYOLS AN JHOLS AN
/34N03s (SA0) IHOLSVLVYA TYNOLLYHILO /34N03s
aNv Y1va aNv v1va
<, N @
ap X .

145 ocr
dwasas\ ||| vyaravav u\ @E@E @E@Ey wy3Ldvay ||
¥aAE03d ||| ¥3onaoyd [T 1\ 71| w3wnsnoo [}

/ Zbanano 1banano /
R Qv L 30VSSIN IOVSSAN oy
° ° (IWILSAS ONIOVSSIW °
901 AN}
/) % §$3004d / /
L W3LSAS | ¥3ldvay ||) NOILVHOILNI ’ vy L ¥aLldvay ||
EINEREN] ¥30NA0¥d B HIWNSNOD [
JWILNNY INIDNT SSIO0Nd ~ JNILNNY
y3ldvay NOILVYOALNI Oy y3ldvay
TAN oLy 80F
(Bsw)i4 1YWHOA (Bsw)wpad4 1300W vLVA (Bsw)s4 1YAHOA
JOVSSIAN ¥IAAIFOTY TYOINONYO IWHOAINN JOVSSIW ¥IANIS

00¥

UW3LSAS

H3IAN3S

| WALSAS
HIAN3S

8Ly

US 9,483,329 B2

Sheet 6 of 17

Nov. 1, 2016

U.S. Patent

¢ 'OLI WILSAS ¥3AIZOTWEIANTS |~ &C9
(014193ds-1dv [N Y}
‘Ol4103dSWALSAS
Soohomﬂ“ T ~| (oLoannod) 1004
LHOdSNYAL TANNVHD NOILDINNOD
ALIAILOINNOD 3OVSSTN ‘SAHd
, SN 08 81s
828 9¢S P,
1, .
INANOdINOD 34018
\ N YITAONVH | A
7) ALIMNO3S JERES
0cs
¥LS 909 809
(NOILV.NISTHdTY ™ /
1000L0¥d 39YSSIN | —| ¥3anvH | N S0
- 1MOdSNYYL) "l 7oo0108d [T " ¥IINAIHOS
NOISYIANOD LYWHO4
(ONIMOLINOW ‘Liany 015
—| Y3ILH3IANOD | | "69) NOILYHIdO
| owwwdod [- Haldvay .
‘1H0ddNS SOD @@E@
"D14NOD /STILMAdoNd | || S R N m_wcwmm_\,_
y3aldvay Zls 20S y3aldvay 916
A A\ 7
#N\m ‘DIANOD ‘OIANOD ‘OlANOD SNOILYYIdO ANV
SIONVLSNI ALIMND3S ‘ONIOYSSIN
ALYy A“_l JONVLSNI ¥3Ldvav ~ oz *_
a3xNoIdANOD | 005

US 9,483,329 B2

Sheet 7 of 17

Nov. 1, 2016

U.S. Patent

NOILYTOIA | .
INIVYLSNOD m
¥I09ML | .
WNYALX3 @
INMavaqa | =
WAL YHOM @

09 019

_

FUNTIVA | |
3L YHOM | @ _
|

|

_

U.S. Patent Nov. 1, 2016 Sheet 8 of 17 US 9,483,329 B2

703‘
=
m
(0}
2
=
]
=
0
A
o
(@]
m
w
w
w
<
=
o
I
oy
w
=<
Z ASYNCH.
< PROCESSING
x| 722 722
8 ASYNC CALLBACK
M| CALL

706
724 724
msg I resp.
|
|
v !
708~ EXTERNAL PARTICIPANT

FIG. 7A

U.S. Patent Nov. 1, 2016 Sheet 9 of 17 US 9,483,329 B2

724 794
=
m
S LY resp.
= |
o |
= |
B|starT | 722 ASYNCH.
Q| 718 PROCESSING 790
IR C)
: 1
; I
mg 724 724 1 resp.
724\@? \ / EZ'/m
% N
% I > msg resp. [\ I
c':E | // [T \\ |
w
2 Iy ,J_lﬁ \ :
e v /
@ O
2 =— T @
i 3718 714 720
TART
|]
I
724/@ Ez\m
msg I resp
v
7161 EXTERNAL PARTICIPANT

FIG. 7B

US 9,483,329 B2

Sheet 10 of 17

Nov. 1, 2016

U.S. Patent

808 V8 ‘DIA -
. s
o @ 0z8
s 918
918 vie m i o
0c8 | 0¢8 Y 39VSSIN 818 2 : f
| Bou ananoaa = e s m
Bsw — F — — — — |||FN:M5|/ 718 m
\ \' zenenb | | uo<wwy>_ 18l8 | S
aN3NONA t
aig / ;
y) @
EENOSE]
VSN N_77g
) Orozs
¥18 918
v18 A e
«—} — + — — , m]
_ wwwmww_m ganand \ e suw W
Zhsw e — — i ,r 718 m
w08 W jananb | | JOVSSIN 1818 | S
9i8 = 3N3NON3
: —®
))
X

N
o
(=)

U.S. Patent Nov. 1, 2016 Sheet 11 of 17 US 9,483,329 B2

—
|
|
|
= © < © aa
o0 £ o0 o0 o0 .
O
[&] [&]
S o | 2
oo | +
[— E
INTEGRATION PROCESS
_‘(:, _
88 |
n O
£ |
|
|
T f i N
[c0) + [e 0]
o /7 |
© |
|
|
[0 0]
©
INTEGRATION PROCESS

US 9,483,329 B2

A

Sheet 12 of 17
g6 914 0L

Nov. 1, 2016

U.S. Patent

V6 DIA
présw=~£ay-L09 m
Zl6 Bsw-dsal
1475)
i 3OVSSIN =\ lllllnﬁulu |||||||
ananoaa -
o
Ll
916 | ifm | 5
_ _ 2
@ L L Bsw-dsal M 4
ISNOdSTY m
139 &
o
T S
B =
S5 2
= =
% =
JOVSSIN —d_ -1
1414]
Bisw-be _ | 216 916
_ Bsw-bal T]
141¢]
.
006

US 9,483,329 B2

Sheet 13 of 17

Nov. 1, 2016

U.S. Patent

INTEGRATION PROCESS

@ 816
4%

JOVSSIN
3N3NON3

1

906

{gonanb
:01-A|daJ)

{prBsw-bai
‘pl-UonE|e.I09)
dsal

{

JMS ADAPTER

716

806

JOVSSIN

3In3ndaa

g6 DIA

oYY

3ovssan |-~ <06

06

v

V6 "Ol4 NOHA

US 9,483,329 B2

Sheet 14 of 17

Nov. 1, 2016

U.S. Patent

0l 'DIA VLVa AMLINTTAL V.LVO AYLINTTAL
d3ZITYWHON aN3s 2 oL EINEREH| {swr) aL
9201 Y201, ¢é0l
zo;ﬁ_._<_>_~_02 A | l_%.
0004~ 9L0L ~_| SIS INIL 5828 1
| ezl | m @ “
_) |
L i% Q2 I
58 !
710} = |
_IIIIIIIJ.I|m_lI|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIL
I
“ ccol ¢col @ Sl E viva
I N 4 AMIINTTEL E— 3 AMIIWITEL
_ Eﬁ . EJ 3n3no ENELEN
T Y | 820} | | SS v20h |o
I _ : W3LSAS e
L 39YSSIN h\ mw<mmm_>_ %
ek I ENENEL T ONIOYSSIN ININON3 0 Eozu m
) / 2]
wmm M ciol | 820l oeol % a001 Noe | [Eozm _ =
[a
AMLINFTAL E (7) 3| AdLInaTL NNS NNS
MBS B0 gl A 2201 (owar |
\ (W3LSAS NOILYYOLN) | (301A30) ¥aLdvay
010} ¥3LdVay ¥IWNSNOD SINF ¥3DONAON LLOW (43anas) &
- 30IA3Q 6L0L

U.S. Patent Nov. 1, 2016 Sheet 15 of 17 US 9,483,329 B2

1100 mg ===
\‘ 1 1(&: 1 120\@
u"? 1120 I
E Z N resp :
resp ok & '@
1120 2 E 1 24 - \
<
< REDELIVERY
SENDER [‘@' =T ’% ON EXCEPTION
1116 0___@____ | >@ 1101
1120 1 122
msg
(protocol)
1120
_ 1 om
UNTLRE) === === —mm e e e e e — — — - 5
DELIVERY EXCEEDS . r2
msg-in-order Lt
| ORTIME OUT (process) o
S ko B s
I .
: ID KNOWN
E‘ I 1 12_0 ~ 1124
= I T
2 ! |
= ' '
g M GET IDs OF KNOWN FILTER (KNOWN)
1067 | & @ MESSAGES FROM MESSAGEBY |—---
i REPOSITORY FILTER ID
= | 1122, 77 &
& 1118 | 1118 |
S | |msginorderfp — — —— - ———— —— — — ——— — — -
< 1120 |
| —
|
=
| \—__,/

_—/
L —— — —{ IDEMPOTENCY |+ ——---]
FIG. 11A 1102 REPOSITORY

U.S. Patent

A

FROMFIG. 11A

Nov. 1, 2016 Sheet 16 of 17 US 9,483,329 B2
_______________________________ -
1108 1
|
/ i
|
= |
= |
e msg

% § {protocol) 1}06 :

20 1120 1122 1 1124

L _@_ »@ RESEQUENCER
o [#]
P
WAITING |
— I
1120 5 b O
I
: I 1124
—
| resp.
: mﬂzo
I
___________________ 4

STORE ID OF SYNCH
MESSAGE SEND/RECEIVE
; S
| | 1118
-1 - _ _ _ _ _ |
™ 1110

— DA} — ORECENVER

1114

msg-in-order
(protocol)

FIG.11B

U.S. Patent

Nov. 1, 2016

Sheet 17 of 17

1200

\

1202~

RECEIVE ADAPTER-RELATED
INFORMATION ASSOCIATED
WITH AN ADAPTER

Y

1204 ~

DETERMINE COMMUNICATION
PATTERNS ASSOCIATED
WITH THE ADAPTER

Y

1206 ~

APPLY QUALITY-OF-SERVICE
PATTERNS TO THE
COMMUNICATION PATTERNS

Y

1208

CONFIGURE AN ADAPTER
FLOW FOR THE ADAPTER

Y

1210

PROVIDE A VISUALIZATION
OF THE ADAPTER FLOW
FOR THE ADAPTER

Y

12127

STORE CHARACTERIZATION
INFORMATION DETERMINED
FOR THE ADAPTER

FIG. 12

US 9,483,329 B2

US 9,483,329 B2

1
CATEGORIZING AND MODELING
INTEGRATION ADAPTERS

BACKGROUND

The present disclosure relates to integration adapters used
in system integration.

Integration adapters are a fundamental part of an integra-
tion system, since they provide applications (e.g., business
applications) with access to a messaging channel. For
example, messages can be sent and received during an
integration process. There can be many different types of
integration adapters, some of which may share common
characteristics. For example, similar integration adapters
can be characterized and/or categorized in the same way.

SUMMARY

The disclosure generally describes computer-imple-
mented methods, software, and systems for generating and
storing adapter characterization information. For example,
adapter-related information associated with an adapter is
received. Communication patterns associated with the
adapter are determined. Quality-of-service patterns are
applied to the communication patterns. An adapter flow is
configured for the adapter. A visualization of the adapter
flow for the adapter is provided. Characterization informa-
tion determined for the adapter is stored. One computer-
implemented method includes: receiving adapter-related
information associated with an adapter, determining com-
munication patterns associated with the adapter, applying
quality-of-service patterns to the communication patterns,
configuring an adapter flow for the adapter, providing a
visualization of the adapter flow for the adapter, and storing
characterization information determined for the adapter.

Integration adapters can be an important part of common
integration systems such as enterprise application integra-
tion (EAI) systems, enterprise service bus (ESB) systems,
and partially manufacturing operations management
(MOM) systems. The adapters can take over crucial tasks
such as (physical) connection handling, format conversions,
scheduling, and quality of service (QoS) support. The adapt-
ers can manifest scenario-specific, pre-processing, and/or
post-processing capabilities in integration scenarios. Uses
and configurations can be related by the conditions under
which integration occurs during message processing, and the
associated processing and communication styles can be
grouped into classes.

Current integration system vendors and modeling
approaches do not cover systematic classification of adapter
types and tasks within an integration system. Further, default
adapter processing in the integration systems can typically
be hidden in various runtime implementations. Also, modi-
fication of default adapter processing is typically nonexis-
tent.

Being able to systematically describe adapter processing
in integration systems, visualize the default behavior, and
modify default behavior can allow for a better understanding
of integration semantics. This can also provide a higher level
of control over a system’s behavior, and consequently a
more configurable, modular, and/or adaptable system.

Some implementations can use integration flows to
specify messaging channels with their control flow and data
flow. The adapter processing may be hidden, e.g., behind
property sheets. Without an explicit “adapter flow,” for
example, information regarding the adapter’s behavior may
not be provided during the reception, sending, and/or pro-

10

15

20

25

30

35

40

45

50

55

60

65

2

cessing of messages. Consequently, a developer who main-
tains the adapter may need to delve into the source code of
the configuration to be able to judge the corresponding
behavior of the associated adapter processing. As such,
partners and customers may not be able to create scenario-
specific variations of adapters or model common aspects of
adapter processing. Common aspects can include, for
example, QoS, synch/asynch and asynch/synch bridges,
and/or other aspects.

Other implementations of this aspect include correspond-
ing computer systems, apparatus, and computer programs
recorded on one or more computer storage devices, each
configured to perform the actions of the methods. A system
of one or more computers can be configured to perform
particular operations or actions by virtue of having software,
firmware, hardware, or a combination of software, firmware,
or hardware installed on the system that in operation causes
(or causes the system) to perform the actions. One or more
computer programs can be configured to perform particular
operations or actions by virtue of including instructions that,
when executed by data processing apparatus, cause the
apparatus to perform the actions.

The foregoing and other implementations can each
optionally include one or more of the following features,
alone or in combination. In particular, one implementation
can include all the following features:

In a first aspect, combinable with any of the previous
aspects, the adapter is an integration adapter and receiving
adapter-related information associated with an adapter
includes identifying an adapter type for the adapter, deter-
mining a modeling complexity for the adapter, determining
an integration style for the adapter, identifying a quality of
service level for the adapter, and capturing adapter tasks and
an architecture associated with the adapter.

In a second aspect, combinable with any of the previous
aspects, determining an integration style for the adapter
includes identifying message exchange patterns that identify
whether a message is in-only or in-out.

In a third aspect, combinable with any of the previous
aspects, determining communication patterns associated
with the adapter includes identifying communication styles
and bridges for the adapter and determining one or more
processing patterns for the adapter.

In a fourth aspect, combinable with any of the previous
aspects, applying quality-of-service patterns to the commu-
nication patterns includes checking reliability messaging for
the adapter, checking idempotency requirements for the
adapter, and checking messaging re-sequencing for the
adapter.

In a fifth aspect, combinable with any of the previous
aspects, adapter types are selected from the group compris-
ing consumer-only adapters, producer-only adapters, con-
sumer+producer adapters, polling adapters, and event-based
adapters.

In a sixth aspect, combinable with any of the previous
aspects, applying quality-of-service patterns to the commu-
nication patterns includes identifying message delivery
types selected from the group comprising best effort (BE), at
least once (ALO), exactly once (EO), and exactly once in
order (EOIO).

In a seventh aspect, combinable with any of the previous
aspects, each adapter is associated with a template.

In an eighth aspect, combinable with any of the previous
aspects, the stored characterization information is used in a
separation of an integration process and an adapter flow for
modularity, deployment options, and potentially heteroge-
neous system setups, along same semantics.

US 9,483,329 B2

3

The subject matter described in this specification can be
implemented in particular implementations so as to realize
one or more of the following advantages. Extract/transform/
load vendors can specify adapter-like processing that is
similar to adapter flows. Data integration modeling appli-
cations can include graphic representations associated with
adapters. Adapter categorization and presentation tools can
provide a systematic approach to identifying, documenting,
and presenting common adapter characteristics, e.g., includ-
ing adapter classifications (e.g., for synch/asynch bridges,
QoS levels). Adapter categorization and presentation tools
can use standard or proprietary syntax/notations (e.g., well-
known and widely-used standards such as Business Process
Model and Notation (BPMN). Adapter categorization and
presentation tools can provide wider applicability, thus
reducing learning curves for developers. Adapter flows
allow a user to define not only the processing of messages,
but also the behavior in case of exceptional situations during
the processing (i.e., exception handling). Separate adapter
definitions allow for modular system setups, in which
“adapter runtime systems” can be exchanged by equivalent
ones with respect to the adapter flow execution (i.e., adapter
virtualization). “Adapter runtime systems” can be distrib-
uted (e.g., running different organizational networks), while
guaranteeing the specified integration semantics.

The details of one or more implementations of the subject
matter of this specification are set forth in the accompanying
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

DESCRIPTION OF DRAWINGS

FIG. 1A is a block diagram of an example environment
for adapter modeling and presentation.

FIG. 1B is a diagram of an example adapter process flow.

FIG. 2 is a diagram of an example conceptual view of an
integration architecture of organizations.

FIG. 3 is a diagram of an example Internet of Things (IoT)
scenario including device enqueue messages (e.g., asynchro-
nous) for time series normalization.

FIG. 4 is a diagram of an example conceptual view of a
conventional integration system 400 with a slight emphasis
on the consumer and producer adapters.

FIG. 5 is a diagram of an example adapter micro-archi-
tecture.

FIG. 6 is a diagram of example AF message processing
patterns.

FIGS. 7A and 7B are diagrams of example adapter bridge
patterns.

FIG. 8A is a diagram of example adapter modeling with
message queuing using data stores.

FIG. 8B is a diagram of an example transactional sub-
process in a consumer adapter.

FIGS. 9A-9B are a diagram of example adapter modeling
with message queuing using data-stores 902 and explicit
modeling of request/reply using response queues.

FIG. 10 is a diagram of an example time series normal-
ization scenario including reliable, secure messaging.

FIGS. 11A-11B are a diagram of an example EOIO
model.

FIG. 12 is a flowchart of an example method for deter-
mining and storing an adapter characterization.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

This disclosure generally describes computer-imple-
mented methods, software, and systems for characterizing

5

10

15

20

25

30

35

40

45

50

55

60

65

4

adapters. For example, adapters, such as integration adapt-
ers, are a fundamental part of an integration system, since
they can provide business applications or other applications
with access to their messaging channel. However, in con-
ventional systems, their modeling and configuration remain
under-represented. For example, while integration control
and data flow syntax and semantics may be expressed in the
Business Process Model and Notation (BPMN) as a seman-
tic model for message-based integration, adapter and the
related quality of service modeling are limited.

In this disclosure, common adapter capabilities are speci-
fied, and general modeling patterns are derived, for which a
compliant representation is defined in BPMN. The patterns
discussed can extend previous work by the adapter flow
(AF), e.g., adapters are evaluated syntactically and seman-
tically for common adapter characteristics.

Adapter Classification can provide a solid basis for a
systematic categorization of adapters in integration systems,
e.g., by providing a sound and comprehensive classification
of adapter processing within integration systems. For
example, adapter classification can apply to different adapter
types (e.g., quality of service (QoS), adapter tasks) and can
include all known adapter characteristics.

In some implementations, visualization of default and
custom processing can be provided. For example, based on
an adapter’s classification, an AF syntax for the processing
of the different adapter types can be defined. In addition,
common processing can be grouped to adapter processing
strategies (e.g., message redelivery, skip failed activity—
continue—and use original message). These constructs can
be further analyzed and combined to adapter patterns (e.g.,
synch/asynch bridge, AF, quality of service levels) that
allow for modular adapter modeling.

QoS (e.g., best effort, exactly once) and transactional
processing can be considered with the adapter processing.
For example, QoS and transaction scoping patterns and a
syntax can be identified that fits to the AFs.

Along with the syntax, a mapping can be defined for a
cloud integration runtime system (e.g., a service platform)
and a compiler syntax can be provided to a runtime system.
The mapping can be reversible, and existing configurations
can be visualized. Modification of default and custom pro-
cessing can occur. For example, a defined syntax can allow
for the introduction of specific “adapter flows” (AFs) while
leveraging processing strategies and patterns on the identi-
fied scopes.

Enterprise application integration can be used by organi-
zations as means of integrating their conventional business
applications with each other, e.g., with the growing amount
of cloud applications and integration with partners’ systems.
In many cases, the integration middleware systems can serve
as the enabling technology for distributed, mission-critical
business processes. For that to occur, these systems can offer
well-defined modeling capabilities to describe integration
semantics (e.g., message creation, transformation, routing)
as well as runtime systems that interpret the definitions for
efficient message processing.

FIG. 1A is a block diagram of an example environment
100 for adapter modeling and presentation. Specifically, the
illustrated environment 100 includes, or is communicably
coupled with, plural client devices 102, a server 104, and
one or more external systems 106, connected using a net-
work 108. For example, the environment 100 can be used to
present information on the plural client devices 102 using
information available from the server 104. Further, input can
be received from users 109 on the plural client devices 102
for analysis by the server 104. For example, users 109 can

US 9,483,329 B2

5

provide adapter-related information and inputs on the plural
client devices 102 that is used by the server 104 to charac-
terize adapters associated with the provided information.

At a high level, the server 104 comprises an electronic
computing device operable to collect, store and provide
access to information for use by the client device 102. A data
store of adapter information 110, for example, can include
information received from the plural client devices 102. For
example, users 109 can provide specific information for an
adapter that the server 104 can use to characterize the
adapter. The adapter information 110 can also include infor-
mation maintained by the server 104 for use in character-
izing adapters using information received from user inputs.
Characterization information that is determined by the appli-
cation server 112 can be stored in a data store of character-
ization information 111. For example, the characterization
information that is stored can characterize an adapter to one
or more of the adapters described below with reference to
FIGS. 2-11.

As used in the present disclosure, the term “computer” is
intended to encompass any suitable processing device. For
example, although FIG. 1A illustrates a single server 104,
the environment 100 can be implemented using two or more
servers 104, as well as computers other than servers, includ-
ing a server pool. Indeed, the server 104 may be any
computer or processing device such as, for example, a blade
server, general-purpose personal computer (PC), Macintosh,
workstation, UNIX-based workstation, or any other suitable
device. In other words, the present disclosure contemplates
computers other than general purpose computers, as well as
computers without conventional operating systems. Further,
illustrated server 104 may be adapted to execute any oper-
ating system, including Linux, UNIX, Windows, Mac OS®,
Java™, Android™, iOS or any other suitable operating
system. According to some implementations, the server 104
may also include, or be communicably coupled with, an
e-mail server, a web server, a caching server, a streaming
data server, and/or other suitable server(s). In some imple-
mentations, components of the server 104 may be distrib-
uted in different locations and coupled using the network
108.

In some implementations, the server 104 includes an
application server 112 that performs processing at the server
104 that is needed to support requests for data and analysis
of information received from the client device 102. For
example, the application server 112 can receive adapter-
related information and inputs from the client device 102.
Further, the application server 112 can use the received
information to characterize an adapter as having character-
istics, as described below with reference to FIGS. 2-11.

The application server 112 includes a user request module
113, for example, that can receive, from the client device
102, adapter-related information associated with an adapter.
For example, the information received can be information
provided by the user in a client application 114, such as a
front end for inputting adapter-related information used to
characterize a specific adapters. The user request module
113 can also prepare data that is to be presented by a
presentation module 118 at the client device 102. For
example, the user request module 113 can prepare data for
presentation based on user inputs received by a communi-
cation module 120. The inputs, for example, can include
user inputs for specifying particular information associated
with an adapter. The user request module 113 can also be
used by the server 104 for communicating with other
systems in a distributed environment, connected to the
network 108 (e.g., the client device 102), as well as other

10

15

20

25

30

35

40

45

50

55

60

65

6

systems (not illustrated) communicably coupled to the net-
work 108. Generally, the user request module 113 comprises
logic encoded in software and/or hardware in a suitable
combination and operable to communicate with the network
108. More specifically, the user request module 113 may
comprise software supporting one or more communication
protocols associated with communications such that the
network 108 or interface’s hardware is operable to commu-
nicate physical signals within and outside of the illustrated
environment 100.

The application server 112 further includes a communi-
cation pattern module 115 for determining communication
patterns associated with an adapter. For example, determin-
ing communication patterns can include identitying com-
munication styles and bridges for a given adapter and
determining one or more processing patterns for the adapter,
as described below with reference to FIGS. 2-11.

The application server 112 further includes a quality of
service module 117 that can be used to apply quality-of-
service patterns to the communication patterns. For
example, applying quality-of-service patterns can include
checking reliability messaging for the adapter, checking
idempotency requirements for the adapter, and checking
messaging re-sequencing for the adapter. Information used
for applying quality-of-service patterns to the communica-
tion patterns can be accessed from the adapter information
110.

The application server 112 further includes an adapter
flow module 119. For example, the adapter flow module 119
can configure an adapter flow for the adapter based on
adapter flow information that is stored in the adapter infor-
mation 110.

The application server 112 further includes a visualization
module 122. As an example, the visualization module 122
can generate instructions so that a visualization for an
adapter can be displayed on the client device 102. For
example, the visualization can match one of the visualiza-
tions shown in FIGS. 2-11.

The server 104 further includes a processor 126 and
memory 128. Although illustrated as the single processor
126 in FIG. 1A, two or more processors 126 may be used
according to particular needs, desires, or particular imple-
mentations of the environment 100. Each processor 126 may
be a central processing unit (CPU), an application specific
integrated circuit (ASIC), a field-programmable gate array
(FPGA), or another suitable component. Generally, the
processor 132 executes instructions and manipulates data to
perform the operations of the client device 102. Specifically,
the processor 126 executes the functionality required to
receive and process requests from the client device 102 and
analyze information received from the client device 102.

The memory 128 (or multiple memories 128) may include
any type of memory or database module and may take the
form of volatile and/or non-volatile memory including,
without limitation, magnetic media, optical media, random
access memory (RAM), read-only memory (ROM), remov-
able media, or any other suitable local or remote memory
component. The memory 128 may store various objects or
data, including caches, classes, frameworks, applications,
backup data, business objects, jobs, web pages, web page
templates, database tables, repositories storing business and/
or dynamic information, and any other appropriate informa-
tion including any parameters, variables, algorithms,
instructions, rules, constraints, or references thereto associ-
ated with the purposes of the server 104. In some imple-
mentations, memory 128 includes one or more of the adapter

US 9,483,329 B2

7

information 110 and the data store of characterization infor-
mation 111. Other components within the memory 128 are
possible.

Each client device 102 of the environment 100 may be
any computing device operable to connect to, or communi-
cate with, at least the server 104 via the network 108 using
a wire-line or wireless connection. In general, the client
device 102 comprises an electronic computer device oper-
able to receive, transmit, process, and store any appropriate
data associated with the environment 100 of FIG. 1A.

A request handler 130, e.g., included in the application
server 112, can receive inputs and handle requests received
from the client device 102. Specifically, the request handler
130 can receive user inputs, including adapter-related infor-
mation, entered by the user 109 on the client application 114.
In some implementations, the request handler 130 can also
process requests received from other sources in addition to
client devices 102, e.g., requests received from external
systems 106.

The illustrated client device 102 further includes a pro-
cessor 132, a memory 134, and an interface 136. The
interface 136 is used by the client device 102 for commu-
nicating with other systems in a distributed environment—
including within the environment 100—connected to the
network 108, e.g., the server 104, as well as other systems
communicably coupled to the network 108 (not illustrated).
Generally, the interface 136 comprises logic encoded in
software and/or hardware in a suitable combination and
operable to communicate with the network 108. More spe-
cifically, the interface 136 may comprise software support-
ing one or more communication protocols associated with
communications such that the network 108 or interface’s
hardware is operable to communicate physical signals
within and outside of the illustrated environment 100.

Regardless of the particular implementation, “software”
may include computer-readable instructions, firmware,
wired and/or programmed hardware, or any combination
thereof on a tangible medium (transitory or non-transitory,
as appropriate) operable when executed to perform at least
the processes and operations described herein. Indeed, each
software component may be fully or partially written or
described in any appropriate computer language including
C, C++, Java™, Visual Basic, assembler, Perl®, any suitable
version of 4GL, as well as others. While portions of the
software illustrated in FIG. 1A are shown as individual
modules that implement the various features and function-
ality through various objects, methods, or other processes,
the software may instead include a number of sub-modules,
third-party services, components, libraries, and such, as
appropriate. Conversely, the features and functionality of
various components can be combined into single compo-
nents as appropriate.

As illustrated in FIG. 1A, the client device 102 includes
the processor 132. Although illustrated as the single proces-
sor 132 in FIG. 1A, two or more processors 132 may be used
according to particular needs, desires, or particular imple-
mentations of the environment 100. Each processor 132 may
be a central processing unit (CPU), an application specific
integrated circuit (ASIC), a field-programmable gate array
(FPGA), or another suitable component. Generally, the
processor 132 executes instructions and manipulates data to
perform the operations of the client device 102. Specifically,
the processor 132 executes the functionality required to send
requests to the server 104 and to receive and process
responses from the server 104.

The illustrated client device 102 also includes a memory
134, or multiple memories 134. The memory 134 may

10

15

20

25

30

35

40

45

50

55

60

65

8

include any memory or database module and may take the
form of volatile or non-volatile memory including, without
limitation, magnetic media, optical media, random access
memory (RAM), read-only memory (ROM), removable
media, or any other suitable local or remote memory com-
ponent. The memory 134 may store various objects or data,
including caches, classes, frameworks, applications, backup
data, business objects, jobs, web pages, web page templates,
database tables, repositories storing business and/or
dynamic information, and any other appropriate information
including any parameters, variables, algorithms, instruc-
tions, rules, constraints, or references thereto associated with
the purposes of the client device 102.

The illustrated client device 102 is intended to encompass
any computing device such as a smart phone, tablet com-
puting device, PDA, desktop computer, laptop/notebook
computer, wireless data port, one or more processors within
these devices, or any other suitable processing device. For
example, the client device 102 may comprise a computer
that includes an input device, such as a keypad, touch screen,
or other device that can accept user information, and an
output device that conveys information associated with the
operation of the server 104 or the client device 102 itself,
including digital data, visual information, or a graphical user
interface (GUI) 140, as shown with respect to and included
by the client device 102. The GUI 140 interfaces with at
least a portion of the environment 100 for any suitable
purpose, including generating user interface screens that
support user input of adapter-related information and display
visualizations of adapters using information received from
the server 104.

FIG. 1B is a diagram of an example adapter process flow
150. For example, the adapter process flow 150 can involve
operations associated with an adapter flow compiler tool-
chain 152, adapters 154 and 156, and an integration process
158.

In some implementations, the AF compiler toolchain 152
includes various steps for classifying and modeling adapters.
For example, a step 160 can parse and obtain adapter
information. A step 162, for example, can apply rules and/or
other transformations to the parsed/obtained adapter infor-
mation. A step 164, for example, can generate runtime code
associated with the adapter. A step 166, for example, can
package and deploy the adapter. The AF compiler toolchain
152 can use adapter information in an AF registry 168, e.g.,
that includes information associated with patterns and char-
acteristics in different adapter types. The AF compiler tool-
chain 152 includes processing, for example, that supports
steps in the method process described below with respect to
FIG. 12.

Processing among the adapters 154 and 156, and an
integration process 158 can include information sent by an
application system 170 (e.g., a sender), a sender-side adapter
172, a receiver-side adapter 174, and a receiver application
system 178. Other processing is possible. The processing
can make use of information stores in data stores 180 used
by the adapters.

FIG. 2 is a diagram of an example conceptual view of an
integration architecture of organizations 200. For example,
FIG. 2 shows a typical conceptual overview of application-
to-application (A2A) and business-to-business (B2B) inte-
gration, which can be found in many organizations. Aspects
include many connections or integration adapters 202,
which are typically under-represented in conventional inte-
gration modeling domains. The integration adapters 202 can
be for integration, for example, of systems 204 over a

US 9,483,329 B2

9

network 206. The integration adapters 202 include applica-
tions 208 and integration systems 210. Other components
are possible.

Integration semantics can be described based on a com-
prehensive (often graphically depicted) syntax and execu-
tion semantics (e.g., process model). Some implementations
can collect a widely-used and accepted collection of inte-
gration patterns that are typical concepts used when imple-
menting a messaging system and have proven to be useful in
practice. However, the implementations may not specify a
semantic model for the formalization of the integration
syntax and semantics. Most noticeable, the integration
adapter modeling with its manifold characteristics can be
reduced to a channel adapter icon in the figure.

In some implementations, a domain-specific language
(DSL) can be studied and provided with well-defined build-
ing blocks for modeling enterprise integration patterns
(EIPs) in the Business Process Model and Notation
(BPMN), which is typically considered a “de-facto” stan-
dard for modeling business process semantics and their
runtime behavior. EIPs can be mapped to BPMN-compatible
syntax and defined execution semantics adapted to message
processing. The use of EIPs can be extended to end-to-end
flows of messages, called integration flows (IFlows). An
IFlow can be considered as message-based integration from
a sending application (e.g., sender, BPMN participant) to
one or many receiving applications (e.g., receiver(s), BPMN
participants). The message-based integration can use BPMN
message flow configurations (e.g., denoting the inbound and
outbound adapters) and dedicated participant(s) that specify
an integration process (composition of EIPs). In some
implementations, BPMN can be used for defining a “mes-
sage-based integration” DSL due to its sufficient coverage of
control flow, data/exception flow, process modeling capa-
bilities, and execution semantics. Current work in the area of
data in business processes, for example, includes configu-
ration-based release processes (COREPRO), which mainly
deals with data-driven process modeling, (business) object
status management, and UML activity diagrams. However,
BPMN can achieve higher coverage in the categories rel-
evant for the approach. As will be appreciated by those of
ordinary skill in the art, other design artifacts and modeling
methodologies instead of or in addition to EIPs and BPMN
can be used.

FIG. 3 is a diagram of an example Internet of Things (IoT)
scenario including device enqueue messages (e.g., asynchro-
nous) for time series normalization. For instance, FIG. 3
shows an excerpt of an asynchronous integration scenario
300 from an IoT domain, e.g., syntactically expressed in
BPMN. The asynchronous integration scenario 300 includes
a device 302 (e.g., a sender) and an integration process 304
(e.g., an adapter) that includes a time series normalization
306. The encrypted incoming message can be of type “TD”
(telemetry data), which has to be normalized with respect to
its timestamps using a message transformation pattern. A
message queue telemetry transport (MQTT) 308 can be used
as a transport protocol, which is a common, lightweight
queuing protocol frequently used in the IoT domain. The
approach to specifying integration semantics and its runtime
can work well for common integration scenarios. More
complex scenarios may have to deal with non-trivial com-
binations of message exchange pattern (MEP) and QoS
levels. These notions may be mostly induced during the
adapter processing and continued into the integration pro-
cess. Current conventional integration modeling approaches
(a) do not classify adapter characteristics, (b) leave the
default adapter processing (mostly) hidden in the various

20

40

45

50

55

10

runtime implementations, and (c) do not allow for configu-
ration and/or change of the default behavior. FIG. 3 also
shows telemetry data 310a-310e in various stages.

This disclosure describes a comprehensive investigation
of the range of characteristics of adapters during the inte-
gration flow processing and the various ways in which they
can be addressed. This provides the foundation for a clas-
sification of the adapter modeling, which can be subse-
quently defined in the form of an AF and patterns. The
pattern-based approach to adapter classification can be an
extension and improvement over existing EIPs and the
IFlow. For example, the adapter processing patterns have
proven to be intuitive to both practitioners and researchers
alike and have been widely utilized for a variety of purposes
including customer and partner content development. The
adapter processing patterns provide the conceptual founda-
tions for a cloud integration system, which can be an
integration as a service implementation based on an open-
source integration system. The motivation for this disclosure
is to provide a conceptual framework for classifying the
adapter processing capabilities of middleware systems more
generally based on the IFlow modeling approach, while
being independent of the specific runtime platforms. Major
components of this work are (1) a comprehensive classifi-
cation of common adapter characteristics in integration
systems and beyond, (2) an extension of the BPMN-based
IFlow model for adapter flows (AFs) that make default
processing visible to the user for all identified categories
from and allows for change of the default behavior, (3) the
derivation of common adapter processing patterns and their
representation in BPMN, and (4) the application to an
existing open source middleware system. This disclosure
proposes to answer to the underlying questions such as
“which QoS does the IFlow in FIG. 3 have?” and “how can
the default handling be adapted to custom requirements?”

Regarding adapter modeling characteristics, the following
section introduces a generalized integration system archi-
tecture, describes classifying adapter characteristics into
classifications, and describes formulating the classifications
as modeling requirements. The adapter type classification
can be supported by an analysis of some number of message
endpoints, e.g., using experience and knowledge provided
by experienced integration experts.

FIG. 4 is a diagram of an example conceptual view of a
conventional integration system 400 with a slight emphasis
on the consumer and producer adapters. For example, as
illustrated in FIG. 4, conventional integration systems can
consist of a set of event-based or polling consumer adapters
402, an integration process engine 404 (e.g., which executes
sets of routing and message transformation tasks), and a set
of producer adapters 406. The adapters 402, 406 can repre-
sent the message endpoint pattern. The adapters can deal
with security concerns and format conversions from the
sender format F (msg) 408 to an internal format F_,, (msg)
410 (e.g., a canonical data model). The pattern can be used,
for example, for integration processing and conversions
from the canonical data model (CDM) to the target format
F,(msg) 412 understood by the receiver. The internal mes-
sages can be either distributed to message queues (e.g.,
asynchronously) or directly sent to the integration system
process engine (e.g., synchronously). The system can use a
set of outbound adapters to actively interact with external
systems. During the whole integration process, recoverabil-
ity can be supported. For example, the internal message
representations can be stored locally using an operational
data store 414 or can be queued 416 for cross-process or
cross-system message exchange. FIG. 4 also shows senders

US 9,483,329 B2

11

418, data and secure/key stores 420, and receivers 422. The
execution environment of the consumer and producer adapt-
ers can be at adapter runtime, which is part of the application
server for conventional integration systems, or can use an
arbitrary software stack. Connections to related parts of the
system (e.g., messaging system, data store) are discussed
subsequently as part of the classification. Five main catego-
ries are considered, which make it possible to comprehen-
sively describe adapters. Common capabilities from these
categories are discussed, and requirements are derived for a
general adapter modeling approach.

Adapters can be canonically differentiated by their type,
e.g., consumer or producer. A consumer adapter, for
example, can allow the message sender applications to
connect to the integration system. Message consumers can
be further sub-divided by their behavior into polling and
event-based adapters. The polling adapter (e.g., (S)FTP) can
be configured to actively check for messages to read and
process the messages (e.g., a model polling consumer). As
such, settings like the polling interval, location, (initial)
delay and format, can be specified. In contrast, an event-
based consumer can specify an endpoint configuration (e.g.,
a servlet URI) on which the configuration can register a
passive listener that waits for events or callbacks from the
sender (e.g., a model event-based consumer). A producer
adapter can forward the messages to their receivers (e.g., a
model producer). As a result, adapters can be consumer-only
adapters, producer-only adapters, or consumer+producer
adapters. Despite the difficult task of determining “active”
adapters, a significant percentage of sender adapters can be
classified as “polling.”

Configuration complexity is another way of classifying
adapters. For example, an analysis of 119 component
bundles can result in identifying 151 single components, or
adapters. Components such as mail, for example, can encap-
sulate multiple endpoints represented by protocols such as
SMTP, POP3, IMAP, and/or other protocols. Another out-
come of the analysis may show a percentage of components
that require more complex configurations, e.g., for the
parameterization of connection and credential details, e.g.,
key/trust store references, as shown in FIG. 4. In some
implementations, scenario specific adaptations can be iden-
tified for an adapter’s behavior. For example, the adapter can
provide extension points to hook in one or more custom
processors, which can be modeled similar to an IFlow.
Evidence for such a requirement can also be found in
concepts such as “channel modules,” e.g., in process inte-
gration middleware systems. This can serve as an extension
to adapters, which can be combined to the notion of “mes-
sage channel” modeling, similar to the integration process.
As such, a message channel can consist of consumer/
producer adapters and arbitrarily many ordered processors.

Integration Styles are another way of classitying adapters.
For example, a message exchange pattern (MEP) can define
whether a message is sent inOnly (i.e., one-way) or inOut
(i.e., two-way). A “two-way” message, for example, can
require a synchronously sent response, while a “one-way”
message will never result to a response. A synchronous
message exchange can require an immediate response dur-
ing the initiated communication (i.e., mostly by event-based
adapters), while an asynchronous exchange can allow for an
early close of the initiated communication, and the response
can be sent using mechanisms such as “function/method
callback”. An example adapter in this context is a persistent
adapter such as a “web service-reliable message” adapter.
This adapter, for example, can receive and store the mes-
sage, send an immediate response, and then start a transac-

10

20

25

30

35

40

45

50

55

60

65

12

tional redelivery. This type of adapter includes “synch/
asynch bridge” adapters, e.g., in model message synch/
asynch or asynch/synch communication. These adapters are
necessary to “bridge” asynch communication to synch end-
points, and vice versa.

QoS is another way of classifying adapters. For example,
service qualities of an integration system can be induced or
supported by adapters such as (listed here in increasing
quality level): best effort (BE), at least once (ALO), exactly
once (EO), and exactly once in order (EOIO). BE messag-
ing, for example, can be summarized as “fire-and-forget”,
which means that no guarantee for the delivery of a message
is given. If a message is to be delivered at least once (ALO),
for example, then the message has to be persistently stored
and redelivered from an adapter or the integration process.
In case the message is to be delivered exactly once (EO), for
example, then ALO has to be enhanced (e.g., by an idem-
potent receiver), which stores the primary identifier of a
message and filters out known messages. In idempotent
transactions, for example, data retrieval operations and
messaging can be performed reliably without changing or
otherwise affecting the data. Although a receiver itself may
behave idempotent, producer adapters or the integration
process can try to act in the receiver’s place. For some
integration cases, for example, the strict adherence to a
message sequence is important (e.g., when creating a busi-
ness object, or before an update). As such, messages in this
case are to be sent exactly once in order (EOIO). Therefore,
EO can be extended by a resequencer pattern, which collects
messages to emit them in the correct order.

FIG. 5 is a diagram of an example adapter micro-archi-
tecture 500. For example, FIG. 5 depicts a conceptual view
on the internal architecture of a common adapter 502. Each
adapter can specity, for example, a connector or a connec-
tion handler. The connector can establish a physical con-
nection to the message endpoints. For secure connections
(e.g., user/password, certificates), a security handler 504 can
be used. Polling consumers can require a scheduler 506 for
use in the configuration of the polling interval. For the QoS
and monitoring support (e.g., message and channel moni-
toring), an operational data store (ODS) 508 or a message
queue 510 can be used. One example counterpart to the
transport protocol handling connector (e.g., Hypertext
Transfer Protocol (HTTP), File Transfer Protocol (FTP), or
Java Message Service (JMS)) is the format conversion (e.g.,
XML, JSON, CSV) (e.g., by a format converter 512). An
adapter can be configured to transform the sender format
F (msg) to the internal representation F_, (msg) and even-
tually to the receiver format F,(msg). The modeled adapter
can be re-used in different adapter instances/configurations.

In some implementations, following an I[Flow modeling
approach, adapters can be represented as message flows in
BPMN, as shown in FIG. 3. This approach can sufficient to
model integration processes with a “simple” adapter con-
figuration, although the approach can over-define BPMN
message flows. The approach can also make the character-
istics of an adapter implicit and not allow for modeling of
complex logic other than on second-level property sheets.
For more complex adapter processing, an explicitly modeled
AF can be defined that is similar to integration processes and
uses basic processing capabilities. More complex patterns
are then derived from the requirements to model capabilities
such as secure communication patterns (e.g., request/re-
sponse and “bridging”) and QoS patterns (e.g., reliable
messaging with transactional redelivery, idempotent
receiver, message resequencer).

US 9,483,329 B2

13

An AF can replace the currently used BPMN message
flow by an additional BPMN pool outside the integration
process for more complex adapters that specify an own
control-, data- and exception flow. Thus, messaging capa-
bilities, as described in the EIPs, can be expressed within
AFs. However, the physical connections to the sender/
receiver can be represented by message flows.

The AF of adapters with several selectable transport
protocols, e.g., represented by connector and protocol han-
dler 514 (e.g., see FIG. 5), can remain stable, while the
entering message flow of consumer and the leaving message
flow of producer adapters can change based on selections.
FIG. 5 also shows an operation module 516, a secure/key
store 518, a communication component 520, adapter
instances 522, a sender/receiver system 524, adapter prop-
erties 524, a communication pool 526, and a physical
message channel 528.

FIG. 6 is a diagram of example AF message processing
patterns 600. Basic “processing capabilities”, as modeled in
FIG. 6, can be used within AFs. A pattern 602, for example,
includes skipping of processing steps based on conditions or
errors. A pattern 604, for example, includes message rede-
livery. These mechanisms can be explicitly modeled using
BPMN exclusive gateway elements. An adapter can decide
to terminate the processing of one message (e.g., as shown
in a pattern 606) or the whole process (e.g., as shown in a
pattern 608) in exceptional situations or through other
events. In case of synch communication, for example, a
response can be returned to the sender. When the basic
processing capabilities are combined, for example, more
complex “adapter processing” can be expressed. Complex
adapter modeling patterns for communication and QoS
support may be used to avoid the occurrence of complex
adapters. FIG. 6 also shows tasks 610 that are the primary
focus of each of the patterns 602-608.

Adapter communication patterns can specify several more
complex interactions of adapters and integration processes
within and outside an organization. For example, different
adapter communication patterns can have different commu-
nication styles and bridge patterns. Common (business)
applications, for example, can support interfaces for syn-
chronous (synch) and/or asynchronous (asynch) communi-
cation styles. Synch communication, for example, means
applications respond to requests (e.g., with error codes or
resulting data), while the requesting application is blocking
in order to get the response (e.g., RPC-style). In asynch
communication, for example, the sending application sends
requests without waiting for responses from other applica-
tions and immediately continues with its processing after
sending a message (e.g., in a non-blocking scenario). In
some implementations, some the sending applications may
offer callback interfaces for getting responses back for their
previously and asynchronously sent requests. Integrating
applications that do not share the same communication style
can require an adapter, for example, for bridging/translating
between both communication styles.

FIGS. 7A and 7B are diagrams of example adapter bridge
patterns. For example, FIG. 7A shows a synch-to-asynch
bridging adapter 702, which indicates the modeled data and
control flow for a synch to asynch bridge. In this example,
a synch call 704 follows the inOut message exchange
pattern. The synch call 704 in the integration process can be
modelled as a BPMN service task that connects with a
message flow to the synch-asynch bridge BPMN pool. The
message can then be forwarded to an asynch call 706
represented as a BPMN intermediate message end event that
connects using a message flow to an external participant

5

10

15

20

25

30

35

40

45

55

60

65

14

708. Processing can continue with asynch processing that
reacts to callback messages in a BPMN intermediate mes-
sage start event and forwards the response to the synch call
service task.

Following the same pattern, FIG. 7B shows a model for
an asynch to synch bridge adapter 710 and includes the
handling of responses and forwarding them to callback
interfaces. For example, the asynch to synch bridge adapter
710 includes an asynch call 712, a synch call 714, and an
external participant 716. Both bridge adapter modeling
patterns can be reused, applied and adjusted in other [Flows
or inlined to the integration process of an [Flow. FIG. 7 also
shows start events 718, end events 720, calls 722, and
messages/responses 724.

In some implementations of processing patterns, AFs can
be modeled to adapt between two integration processes
across tenant or network boundaries (e.g., application-to-
application (A2A) and business-to-business (B2B)), for
which an integration process is associated to one tenant or
network. In the case of cross-tenant integration, for example,
the IFlow of tenant T, can adapt to an IFlow in another
tenant T, by representing the [Flow of T, as an delegate in
the IFlow of T, and vice versa. As such, IFlows are either
“local” to one tenant (e.g., meaning that they are locally
visible and modifiable) or IFlows are “remote” (e.g., mean-
ing that they can only be connected from “local” IFlows but
not made visible or modified). As such, for synch commu-
nication, the “remote” IFlow can be represented as a col-
lapsed BPMN pool (e.g., cannot be expanded) and con-
nected to the “local” integration process with request/
response BPMN message flows. For reliable asynchronous
communication, for example, a shared data store can be used
to make the necessary queuing step explicit. As a represen-
tative pattern, this “remote” IFlow delegate can also be used
to model across networks or [Flows, such as by changing its
type.

Different quality of service patterns can exist, e.g., with
higher QoS levels denoting more complex configuration
building blocks. Subsequently, the necessary patterns can be
defined and mapped to BPMN.

Reliable Messaging is another important aspect associ-
ated with adapters and communication. For example, to
guarantee that a message is not lost in asynchronous sce-
narios, the message can be stored into a message store (e.g.,
database) or enqueued to a messaging system (e.g., IMS
brokers) before the reception is explicitly or implicitly
acknowledged using an acknowledgement (e.g., ACK) to the
sender. As such, an integration system can aim to store the
message in the consumer adapter, sending the acknowledge-
ment messages to unblock the sender waiting for a response
and to minimize the possibilities for errors before a persis-
tency step. Similarly, some adapters can access a data
store/queue for cross-applications and software systems
(e.g., JDBC, IMS). AFs can also connect to a BPMN data
store, e.g., to model key and trust stores.

FIG. 8A is a diagram of example adapter modeling with
message queuing using data stores. FIG. 8B is a diagram of
an example transactional sub-process 812 in a consumer
adapter. As shown in FIG. 8A, for example, AFs are used to
model JMS adapters and the access to queues in a message
broker, which is represented as a BPMN Data Store. This
allows the attachment of configurations to the data store
(such as connection details) and to the BPMN Data Asso-
ciation. This further allows the attachment of the enqueue/
dequeue tasks in the producer adapter to the data store (such
as queue/topic names). Through a BPMN timer event, for
example, the polling behavior of a consumer adapter can be

US 9,483,329 B2

15

modeled. For instance, FIG. 8A shows the periodical, trans-
actional dequeue of messages using a BPMN task within a
transactional subprocess, which specifies the transactional
boundaries. In case of exceptions that occur during the task
processing within these boundaries, the message is not
dequeued from the queue. Instead, a message redelivery
would be attempted in the next polling interval. Although
publish/subscribe scenarios can be modeled similarly, they
could be represented by BPMN signal end/start events as
depicted in FIG. 8B. The transferred message can be deter-
mined by the associated BPMN data object, and the corre-
sponding events can be identified by their matching names.
Doing so can make the inner mechanics implicit, but would
allow for the modeling of an event-based consumer adapter.
FIGS. 8A and 8B also show tasks 814, messages 816, start
events 818, end events 820, and a message broker 822.

FIGS. 9A-9B are a diagram of example adapter modeling
900 with message queuing using data-stores 902 and explicit
modeling of request/reply using response queues 904. As
such, FIGS. 9A-9B depict an example of reliable asynchro-
nous, inOut messaging. In this example, a “reply-to” header
field 906 attached to the req-msg 908 is assumed, indicating
that a JMS Adapter 910 should reply to the specified queue.
The queued response is correlated to the waiting integration
process instance by using the identifier of the req-msg.
FIGS. 9A-9B also show tasks 912, messages 914 start events
916, and end events 918.

In some implementations, an idempotency repository
1102 (described below with reference to FIGS. 11A-11B)
can be used to support at-most-once (AMO) and exactly
once (EO) (e.g., in combination with reliable messaging). In
this way, the integration system needs to take care that
messages are not sent twice to a receiver 1114. This can be
modeled by a flow step the integration process (or AF) that
filters already sent messages, which is preferably executed
just before the message is sent to the receiving application
in a producer AF. FIGS. 11A-11B, described below, show
the filter processing as part of a producer AF 1112 by
accessing the idempotency repository 1102, which is repre-
sented as a BPMN data store, storing the identifiers of
already processed messages against which the current mes-
sage identifier can be checked.

In an example of message re-sequencing, a resequencer
can be used for in-order (IO) scenarios, for which the
messages are ordered according to a sequence number.
Alternatively, order preserving queues (e.g., specified in
IJMS) are used to keep messages in sequence. EOIO pro-
cessing can additionally require the combination of reliable
messaging with redelivery semantics and a filter step using
the idempotency repository 1102 to guarantee that the mes-
sages are sent exactly once and in order.

In some implementations, abstract definitions of BPMN
AFs and integration patterns can be applied to the motivat-
ing “Internet of Things” examples (e.g., as described above).
For example, the AFs and integration patterns can provide
secure, reliable messaging through the case of EOIO inte-
gration, which represents a complex configuration from the
important area of QoS. Further, the abstract definitions of
BPMN AFs and integration patterns support the visualiza-
tion and re-configuration of the expected default exception
handling and compensation in a reliable time series normal-
ization scenario.

FIG. 10 is a diagram of an example time series normal-
ization scenario 1000 including reliable, secure messaging.
For example, FIG. 10 shows a syntax proposal that follows
a mapping to BPMN. The devices enqueue 1002 an
encrypted TD message 1004 to the telemetry queue 1006 in

25

35

40

45

55

16

the messaging system using an MQTT adapter 1008. The
integration process listens to the queue using a JMS adapter
1010, which decrypts 1012 received messages and passes
1014 them to an integration process 1016, where the mes-
sage content is normalized 1018. FIG. 10 also shows a
sender 1019, a dequeue task 1020, messages 1022, start
events 1024, end events 1026, and key stores 1028.

The QoS support is crucial for integration systems. When
sending a message synchronously to a receiver, for example,
BE can be applied, e.g., delivery will be attempted, other-
wise the sender 1019 will receive an exception message. In
case of asynchronous, reliable, in-order messaging, this
approach is not sufficient. The message has to be persistently
stored, and a retry has to be started to guarantee its delivery,
e.g., in a message queue, since the sender cannot be notified.
In addition, the order of the messages according to a
message sequence has to be guaranteed using a resequencer
pattern.

FIGS. 11A-11B are a diagram of an example EOIO model
1100. For example, the model supports message redelivery
1101 in a consumer adapter 1104, a resequencer 1106 in an
integration process 1108, and idempotent message handling
1110 in a producer adapter 1112. If in addition, duplicate
messages are filtered out during the processing, the QoS is
called EOIO, as shown syntactically in FIGS. 11A-11B. The
consumer AF starts with a synchronous part by storing the
message and sending a response. In this example, a rede-
livery on exception sub-process acts as a combined ALO,
synch/asynch bridge pattern. This then starts the asynchro-
nous delivery of the message to the integration process,
which collects messages and orders them along defined
sequences using a resequencer sub-process pattern and syn-
chronously emits the messages to the producer adapter 1112.

The producer adapter 1112 checks whether a message has
already been processed and synchronously sends it to a
receiver 1114. The receiver’s response (e.g., acknowledge-
ment or exception) is passed to the integration process 1108,
which triggers a message redelivery on exception. FIGS.
11A-11B also show a sender 1116, other tasks 1118, mes-
sages 1120, start events 1122, and end events 1124.

In some implementations, information associated with
qualitative analysis and experiences can be collected. For
example, collection of information can include practical
experiences with the defined adapter modeling based on an
evaluation by experienced integration experts. The evalua-
tion of the approach can be summarized to various topics,
which are discussed in detail below. Information that is
collected can be used to determine, for example, that in
general, the integration models with an explicit AF are
experienced as more complex. This determination may, for
example, contradict the intended/predicted usage of BPMN
by business experts. However, the visibility of the default
adapter characteristics can allow for better insights into the
integration flow modeling, ease of use, and a more intuitive
and faster modeling through the identified patterns.

In some implementations, tool support explicitly modeled
AFs can lead to more complex IFlows that require adequate
tool support, as users do not want to model them piece by
piece. For example, using a “collapsed,” read-only visual-
ization of the AF, the insights can be available on expansion
of'the pool. Adapters without complex flow logic can remain
as message flows. One example technical challenge
involved in modeling is the resolution of AFs that become a
“first-level” syntax construct, when represented as col-
lapsed/expanded pool. The AF could be edited in an external
view, which would reduce the complexity on a view. How-
ever, the view can hide information through “out-of-con-

US 9,483,329 B2

17

text” placement. In some implementations, an in-context
editing view can be embedded into the IFlow, however the
tool can make it more difficult to distinguish between
integration processes and AF. In some implementations, an
editor can also function purely on a pattern level, thus
making the EIPs and the AF patterns first-class entities. As
a result, a user would not model an IFlow such as the EOIO
scenario piece-by-piece, but could select from a list of QoS
patterns. According to the feedback (e.g., received from
modeling experts), the pattern-based approach can help to
deal with the complex syntax and can allow for more
modular modeling.

Modeling complexity is another factor to consider regard-
ing modeling. For example, some BPMN syntax elements
are not applicable to the integration environment in a useful
way. For example, the lane element has no semantic mean-
ing and can only be used to structure certain aspects of the
integration systems, such as distinguishing normal logic
from AF logic. One possible result is an increase in the size
of a diagram leading to a confusing model. Additionally, as
described with respect to FIG. 8A, for queuing with a
message broker, the data association to the message broker
is denoted with the queue name to/from messages that
should be enqueued/dequeued. The modeling complexity in
FIG. 8A may be rated as complex, e.g., the adapter 802
communicates with the adapter 808, while the adapter 804
seems more related to the adapter 802. However, the use of
this model was determined to be favored over the BPMN
signal approach proposed for FIG. 8B. In case of many
connections to the message broker, a partitioning of the
IFlow into several smaller diagrams can help to make the
single parts more understandable (e.g., “in-context” editing).
At the same time, tool support can be needed to show the
complete IFlow on demand. The alternative of modeling
several instances of one broker in one IFlow, which are then
connected to related adapters only, is not seen as a desirable
solution.

In some implementations, modeling preferences made by
experts can be used. For example, while the modeling of AFs
may be very well received, the participants who are evalu-
ating models may differentiate between producer and con-
sumer adapter modeling. Producer adapter modeling, for
example, can allow for adding scenario-specific “pre-pro-
cessing” capabilities to the system, e.g., before entering the
integration process (e.g., especially for bridges). Consumer
AFs can be determined to be limited to the QoS support,
while potential “post-processing” logic can be executed in
the integration process. However, from a modularity and
resource consumption point of view, a clear separation of
adapter and integration process logic can be useful. The
explicit modeling of security related topics such as key
stores can also be evaluated. For example, while participants
with a more technical background may prefer the proposed
approach (e.g., helping them to be precise in the security
aspect modeling), more business related participants may
complain about the additional complexity. However, both
groups may agree that a more explicit modeling of the inner
workings of a message broker is not necessary, and the
transactional de-queuing with the BPMN Transactional Sub-
Process is rated intuitive.

In some implementations, model-driven adapter develop-
ment and re-configuration can be used. For example, some
approaches for automatic adapter generation and (dynamic)
re-configuration can be based on a start of authority (SOA)
domain or other approach that does not define a (conceptual)
modeling approach for integration adapters. In another
example, other approaches can be based on model-driven

10

15

20

25

30

35

40

45

50

55

60

65

18

development of web services, e.g., while highlighting the
importance of a QoS support. Other approaches can target
self-adapting adapters in terms of signature-/protocol-level
and quality related re-configurations and planning.

Other approaches can be based on data-intensive adapter
modeling. For example, through data warehouse connectiv-
ity scenarios, an extract-transform-load (ETL) domain can
be used for conceptual modeling of more “data-intensive”
adapters. Although characteristics such as QoS may not be
relevant for data warehouse connectivity, these modeling
approaches can be seen as domain-specific, complementary
work. For instance, ETL processes can be mapped to BPMN,
and a maintenance framework can be provided. In some
implementations, UML-based approaches can be used, e.g.,
for modeling data mining with time-series data or ETL data
flows. The approaches can define new icon notations, e.g.,
that are similar to EIP notations. These approaches can focus
on the data flow limits the modeling to data transformation.

In some implementations, other adapter types can be used
in addition to the common adapter types used for integration
systems, as described above. For example, adapter types that
are used can extend the BPMN-based definition of IFlows
by AF constructs and patterns, e.g., to make the default
adapter behavior visible. Adapter types can also provide a
basis for different scenario-specific adapter configurations.
Definitions for adapters can start, for example, with a
systematical analysis of common adapter characteristics,
e.g., spanning to edge cases such as QoS modeling.

The mapping of these adapter characteristics to BPMN
described above can allow the adapters to be linked to
integration flows and can support definitions of common
integration adapter processing capabilities and patterns. The
approach can be applied to real-world Internet of Things
integration scenarios, such as using the exactly-once-in-
order (EOIO) QoS case. While there is a syntactical feasi-
bility and applicability of the approach, any shortcomings
due to BPMN’s focus on control over data flow can be
solved by explicit modeling of AFs as separate BPMN pools.

The approaches described above show the value of a
modular, pattern-based and explicit modeling approach.
However, other implementations permit modification of
pre-existing elements and the syntax of BPMN models, such
as that use of conditional data flows.

FIG. 12 is a flowchart of an example method 1200 for
determining and storing an adapter characterization. For
clarity of presentation, the description that follows generally
describes method 1200 in the context of FIGS. 1-11. How-
ever, it will be understood that the method 1200 may be
performed, for example, by any other suitable system,
environment, software, and hardware, or a combination of
systems, environments, software, and hardware as appropri-
ate. For example, the server 104 and/or its components can
be used to execute the method 1200.

At 1202, adapter-related information associated with an
adapter is received. For example, the server 104 can receive
user inputs, including adapter-related information, from the
client device 102.

In some implementations, the adapter is an integration
adapter, and receiving adapter-related information associ-
ated with an adapter includes the following. An adapter type
is identified for the adapter. A modeling complexity is
determined for the adapter. An integration style is deter-
mined for the adapter. A quality of service level is identified
for the adapter. Adapter tasks and an architecture are cap-
tured associated with the adapter. These features, for
example, are represented in FIGS. 2-11.

US 9,483,329 B2

19

In some implementations, determining an integration
style for the adapter includes identifying message exchange
patterns that identify whether a message is in-only or in-out.
For example, some of the adapters depicted in FIGS. 2-11
are shown as in-only or in-out.

In some implementations, adapter types include con-
sumer-only adapters, producer-only adapters, consumer+
producer adapters, polling adapters, and event-based adapt-
ers. Examples of adapter types are described above with
reference to FIGS. 2-11.

In some implementations, applying quality-of-service
patterns to the communication patterns includes identifying
message delivery types such as best effort (BE), at least once
(ALO), exactly once (EO), and exactly once in order
(EOIO). For example, various message delivery types are
described above with reference to FIGS. 2-11.

In some implementations, each adapter is associated with
a template. For example, various templates are described
above with reference to FIGS. 2-11. In some implementa-
tions, when creating a new adapter, a user can review
existing templates and select one of the templates as a
starting point for modeling the new adapter. Selection of the
template can be facilitated based on user inputs associated
with the new adapter.

At 1204, communication patterns associated with the
adapter are determined. For example, the communication
pattern module 115 can determine communication patterns
associated with an adapter. Determining communication
patterns can include identifying communication styles and
bridges for a given adapter and determining one or more
processing patterns for the adapter, as described above with
reference to FIGS. 2-1.

At 1206, quality-of-service patterns are applied to the
communication patterns. As an example, the quality of
service module 117 can apply quality-of-service patterns to
the communication patterns. Applying quality-of-service
patterns can include checking reliability messaging for the
adapter, checking idempotency requirements for the adapter,
and checking messaging re-sequencing for the adapter.
Information used for applying quality-of-service patterns to
the communication patterns can be accessed from the
adapter information 110.

At 1208, an adapter flow is configured for the adapter. For
example, the adapter flow module 119 can configure an
adapter flow for the adapter based on adapter flow informa-
tion that is stored in the adapter information 110. The adapter
flows can match, for example, flows described above with
reference to FIGS. 2-11.

At 1210, a visualization of the adapter flow for the adapter
is provided. The visualization module 122, for example, can
generate instructions so that a visualization for an adapter
can be displayed on the client device 102. For example, the
visualization can match one of the visualizations shown in
FIGS. 2-11.

At 1212, characterization information determined for the
adapter is stored. For example, the server 104 can store the
characterization information for the adapter in the charac-
terization data 111.

In some implementations, the stored characterization
information can be used for a separation of an integration
process and an adapter flow for modularity, deployment
options, and potentially heterogeneous system setups (e.g.,
along the same semantics). For example, event stream
processing or ETL system can be used at adapter runtime,
while guaranteeing the (adapter) integration semantics.

Implementations of the subject matter and the functional
operations described in this specification can be imple-

10

15

20

25

30

35

40

45

50

55

60

65

20

mented in digital electronic circuitry, in tangibly embodied
computer software or firmware, in computer hardware,
including the structures disclosed in this specification and
their structural equivalents, or in combinations of one or
more of them. Implementations of the subject matter
described in this specification can be implemented as one or
more computer programs, i.e., one or more modules of
computer program instructions encoded on a tangible, non-
transitory computer storage medium for execution by, or to
control the operation of, data processing apparatus. Alter-
natively or in addition, the program instructions can be
encoded on an artificially generated propagated signal, e.g.,
a machine-generated electrical, optical, or electromagnetic
signal that is generated to encode information for transmis-
sion to suitable receiver apparatus for execution by a data
processing apparatus. The computer storage medium can be
a machine-readable storage device, a machine-readable stor-
age substrate, a random or serial access memory device, or
a combination of one or more of them.

The terms “data processing apparatus,” “computer,” or
“electronic computer device” (or equivalent as understood
by one of ordinary skill in the art) refer to data processing
hardware and encompass all kinds of apparatus, devices, and
machines for processing data, including by way of example,
a programmable processor, a computer, or multiple proces-
sors or computers. The apparatus can also be or further
include special purpose logic circuitry, e.g., a central pro-
cessing unit (CPU), an FPGA (field programmable gate
array), or an ASIC (application-specific integrated circuit).
In some implementations, the data processing apparatus
and/or special purpose logic circuitry may be hardware-
based and/or software-based. The apparatus can optionally
include code that creates an execution environment for
computer programs, e.g., code that constitutes processor
firmware, a protocol stack, a database management system,
an operating system, or a combination of one or more of
them. The present disclosure contemplates the use of data
processing apparatuses with or without conventional oper-
ating systems, for example LINUX, UNIX, WINDOWS,
MAC OS, ANDROID, IOS, or any other suitable conven-
tional operating system.

A computer program, which may also be referred to or
described as a program, software, a software application, a
module, a software module, a script, or code, can be written
in any form of programming language, including compiled
or interpreted languages, or declarative or procedural lan-
guages, and it can be deployed in any form, including as a
stand-alone program or as a module, component, subroutine,
or other unit suitable for use in a computing environment. A
computer program may, but need not, correspond to a file in
a file system. A program can be stored in a portion of a file
that holds other programs or data, e.g., one or more scripts
stored in a markup language document, in a single file
dedicated to the program in question, or in multiple coor-
dinated files, e.g., files that store one or more modules,
sub-programs, or portions of code. A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net-
work. While portions of the programs illustrated in the
various figures are shown as individual modules that imple-
ment the various features and functionality through various
objects, methods, or other processes, the programs may
instead include a number of sub-modules, third-party ser-
vices, components, libraries, and such, as appropriate. Con-

2

US 9,483,329 B2

21

versely, the features and functionality of various compo-
nents can be combined into single components as
appropriate.

The processes and logic flows described in this specifi-
cation can be performed by one or more programmable
computers executing one or more computer programs to
perform functions by operating on input data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., a CPU, an FPGA, or an ASIC.

Computers suitable for the execution of a computer
program can be based on general or special purpose micro-
processors, both, or any other kind of CPU. Generally, a
CPU will receive instructions and data from a read-only
memory (ROM) or a random access memory (RAM) or
both. The essential elements of a computer are a CPU for
performing or executing instructions and one or more
memory devices for storing instructions and data. Generally,
a computer will also include, or be operatively coupled to
receive data from or transfer data to, or both, one or more
mass storage devices for storing data, e.g., magnetic disks,
magneto optical disks, or optical disks. However, a com-
puter need not have such devices. Moreover, a computer can
be embedded in another device, e.g., a mobile telephone, a
personal digital assistant (PDA), a mobile audio or video
player, a game console, a global positioning system (GPS)
receiver, or a portable storage device, e.g., a universal serial
bus (USB) flash drive, to name just a few.

Computer-readable media (transitory or non-transitory, as
appropriate) suitable for storing computer program instruc-
tions and data include all forms of non-volatile memory,
media, and memory devices, including by way of example,
semiconductor memory devices, e.g., erasable program-
mable read-only memory (EPROM), electrically erasable
programmable read-only memory (EEPROM), and flash
memory devices; magnetic disks, e.g., internal hard disks or
removable disks; magneto optical disks; and CD ROM,
DVD+/-R, DVD-RAM, and DVD-ROM disks. The
memory may store various objects or data, including caches,
classes, frameworks, applications, backup data, jobs, web
pages, web page templates, database tables, repositories
storing business and/or dynamic information, and any other
appropriate information including any parameters, variables,
algorithms, instructions, rules, constraints, or references
thereto. Additionally, the memory may include any other
appropriate data, such as logs, policies, security or access
data, reporting files, as well as others. The processor and the
memory can be supplemented by, or incorporated in, special
purpose logic circuitry.

To provide for interaction with a user, implementations of
the subject matter described in this specification can be
implemented on a computer having a display device, e.g., a
CRT (cathode ray tube), LCD (liquid crystal display), LED
(Light Emitting Diode), or plasma monitor, for displaying
information to the user, and a keyboard and a pointing
device, e.g., a mouse, trackball, or trackpad, by which the
user can provide input to the computer. Input may also be
provided to the computer using a touchscreen, such as a
tablet computer surface with pressure sensitivity, a multi-
touch screen using capacitive or electric sensing, or other
type of touchscreen. Other kinds of devices can be used to
provide for interaction with a user as well; for example,
feedback provided to the user can be any form of sensory
feedback, e.g., visual feedback, auditory feedback, or tactile
feedback; and input from the user can be received in any
form, including acoustic, speech, or tactile input. In addi-
tion, a computer can interact with a user by sending docu-

20

40

45

22

ments to and receiving documents from a device that is used
by the user; for example, by sending web pages to a web
browser on a user’s client device in response to requests
received from the web browser.

The term “graphical user interface,” or “GUI,” may be
used in the singular or the plural to describe one or more
graphical user interfaces and each of the displays of a
particular graphical user interface. Therefore, a GUI may
represent any graphical user interface, including but not
limited to, a web browser, a touch screen, or a command line
interface (CLI) that processes information and efficiently
presents the information results to the user. In general, a GUI
may include a plurality of user interface (UI) elements, some
or all associated with a web browser, such as interactive
fields, pull-down lists, and buttons operable by the business
suite user. These and other Ul elements may be related to or
represent the functions of the web browser.

Implementations of the subject matter described in this
specification can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface or a web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any
combination of one or more such back-end, middleware, or
front-end components. The components of the system can be
interconnected by any form or medium of wireline and/or
wireless digital data communication, e.g., a communication
network. Examples of communication networks include a
local area network (LAN), a radio access network (RAN), a
metropolitan area network (MAN), a wide area network
(WAN), Worldwide Interoperability for Microwave Access
(WIMAX), a wireless local area network (WLAN) using, for
example, 802.11 a/b/g/n and/or 802.20, all or a portion of the
Internet, and/or any other communication system or systems
at one or more locations. The network may communicate
with, for example, Internet Protocol (IP) packets, Frame
Relay frames, Asynchronous Transfer Mode (ATM) cells,
voice, video, data, and/or other suitable information between
network addresses.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

In some implementations, any or all of the components of
the computing system, both hardware and/or software, may
interface with each other and/or the interface using an
application programming interface (API) and/or a service
layer. The API may include specifications for routines, data
structures, and object classes. The API may be either com-
puter language-independent or -dependent and refer to a
complete interface, a single function, or even a set of APIs.
The service layer provides software services to the comput-
ing system. The functionality of the various components of
the computing system may be accessible for all service
consumers using this service layer. Software services pro-
vide reusable, defined business functionalities through a
defined interface. For example, the interface may be soft-
ware written in JAVA, C++, or other suitable language
providing data in Extensible Markup Language (XML)
format or other suitable format. The API and/or service layer
may be an integral and/or a stand-alone component in
relation to other components of the computing system.
Moreover, any or all parts of the service layer may be

US 9,483,329 B2

23

implemented as child or sub-modules of another software
module, enterprise application, or hardware module without
departing from the scope of this disclosure.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of any invention or on the scope of what
may be claimed, but rather as descriptions of features that
may be specific to particular implementations of particular
inventions. Certain features that are described in this speci-
fication in the context of separate implementations can also
be implemented in combination in a single implementation.
Conversely, various features that are described in the context
of a single implementation can also be implemented in
multiple implementations separately or in any suitable sub-
combination. Moreover, although features may be described
above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
sub-combination or variation of a sub-combination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation and/or integration
of various system modules and components in the imple-
mentations described above should not be understood as
requiring such separation and/or integration in all imple-
mentations, and it should be understood that the described
program components and systems can generally be inte-
grated together in a single software product or packaged into
multiple software products. Furthermore, while the opera-
tions depicted in the drawings may indicate start and/or end
points for the operations, implementations of the methods
described in the disclosure are not restricted to the particular
start and/or end point as illustrated. Other implementations
may start and/or end at different points of the operations.

Particular implementations of the subject matter have
been described. Other implementations, alterations, and
permutations of the described implementations are within
the scope of the following claims as will be apparent to those
skilled in the art. For example, the actions recited in the
claims can be performed in a different order and still achieve
desirable results.

Accordingly, the above description of example implemen-
tations does not define or constrain this disclosure. Other
changes, substitutions, and alterations are also possible
without departing from the spirit and scope of this disclo-
sure.

What is claimed is:

1. A method of modeling and storing characterized adapt-
ers, the method comprising:

receiving, by a user request module of a server, an

adapter-related information associated with an adapter,
wherein receiving adapter-related information associ-
ated with an adapter include determining a modeling
complexity for the adapter;

determining, by a communication module of the server,

communication patterns associated with the adapter,
wherein determining communication patterns associ-
ated with the adapter includes identifying communica-
tion styles and bridges for the adapter, and determining
one or more processing patterns for the adapter;
applying, by a quality of service module of the server,
quality-of-service patterns to the communication pat-

15

20

25

30

35

40

45

50

55

60

65

24

terns, wherein applying quality-of-service patterns to
the communication patterns includes checking reliabil-
ity messaging for the adapter, checking idempotency
requirements for the adapter, and checking messaging
re-sequencing for the adapter;

configuring, by an adapter flow module at the server, an

adapter flow for the adapter;

providing, by a visualization module of the server, a

visualization of the adapter flow for the adapter to a
client device; and

storing characterization information determined for the

adapter in a characterization data store of the server,
wherein the stored characterization information is used
in a separation of an integration process and an adapter
flow for modularity, deployment options, and poten-
tially heterogeneous system setups, along same seman-
tics.

2. The method of claim 1, wherein the adapter is an
integration adapter and wherein receiving adapter-related
information associated with an adapter includes:

identifying an adapter type for the adapter;

determining an integration style for the adapter;

identifying a quality of service level for the adapter; and

capturing adapter tasks and an architecture associated
with the adapter.

3. The method of claim 2, wherein determining an inte-
gration style for the adapter includes identifying message
exchange patterns that identify whether a message is in-only
or in-out.

4. The method of claim 2, wherein adapter types are
selected from the group comprising consumer-only adapters,
producer-only adapters, consumer+producer adapters, poll-
ing adapters, and event-based adapters.

5. The method of claim 1, wherein applying quality-of-
service patterns to the communication patterns includes
identifying message delivery types selected from the group
comprising best effort (BE), at least once (ALO), exactly
once (EO), and exactly once in order (EOIO).

6. The method of claim 1, wherein each adapter is
associated with a template in an association including at
least re-usability and pattern-based modeling.

7. A system for modeling and storing characterized adapt-
ers, the system comprising:

one or more processors; and

a memory storing:

a library defining adapter information and character-
ization information; and
an application, with instructions executed by the one or

more processors, the instructions for:

receiving, by a user request module of a server,
adapter-related information associated with an
adapter, wherein receiving adapter-related infor-
mation associated with an adapter include deter-
mining a modeling complexity for the adapter;

determining, by a communication module of the
server, communication patterns associated with
the adapter, wherein determining communication
patterns associated with the adapter includes iden-
tifying communication styles and bridges for the
adapter, and determining one or more processing
patterns for the adapter;

applying, by a quality of service module of the
server, quality-of-service patterns to the commu-
nication patterns, wherein applying quality-of-
service patterns to the communication patterns
includes checking reliability messaging for the

US 9,483,329 B2

25

adapter, checking idempotency requirements for
the adapter, and checking messaging re-sequenc-
ing for the adapter;

configuring, by a an adapter flow module at the
server, an adapter flow for the adapter;

providing, by a visualization module of the server, a
visualization of the adapter flow for the adapter to
a client device; and

storing characterization information determined for
the adapter in a characterization data store of the
server, wherein the stored characterization infor-
mation is used in a separation of an integration
process and an adapter flow for modularity,
deployment options, and potentially heteroge-
neous system setups, along same semantics.

8. The system of claim 7, wherein the adapter is an
integration adapter and wherein receiving adapter-related
information associated with an adapter includes:

identifying an adapter type for the adapter;

determining an integration style for the adapter;

identifying a quality of service level for the adapter; and

capturing adapter tasks and an architecture associated
with the adapter.

9. The system of claim 8, wherein determining an inte-
gration style for the adapter includes identifying message
exchange patterns that identify whether a message is in-only
or in-out.

10. The system of claim 8, wherein adapter types are
selected from the group comprising consumer-only adapters,
producer-only adapters, consumer+producer adapters, poll-
ing adapters, and event-based adapters.

11. A non-transitory, computer-readable medium, the
computer-readable medium comprising computer-readable
instructions for modeling and storing characterized adapters
embodied on tangible, non-transitory media, the instructions
operable when executed by at least one computer to:

receive, by a user request module of a server, adapter-

related information associated with an adapter, wherein
receiving adapter-related information associated with
an adapter include determining a modeling complexity
for the adapter;

10

15

20

25

30

35

26

determine, by a communication module of the server,
communication patterns associated with the adapter,
wherein determining communication patterns associ-
ated with the adapter includes identifying communica-
tion styles and bridges for the adapter, and determining
one or more processing patterns for the adapter;

apply, by a quality of service module of the server,
quality-of-service patterns to the communication pat-
terns, wherein applying quality-of-service patterns to
the communication patterns includes checking reliabil-
ity messaging for the adapter, checking idempotency
requirements for the adapter; and checking messaging
re-sequencing for the adapter;

configure, by a an adapter flow module at the server, an

adapter flow for the adapter;

provide, by a visualization module of the server, a visu-

alization of the adapter flow for the adapter to a client
device; and

store characterization information determined for the

adapter in a characterization data store of the server,
wherein the stored characterization information is used
in a separation of an integration process and an adapter
flow for modularity, deployment options, and poten-
tially heterogeneous system setups, along same seman-
tics.

12. The computer-readable medium of claim 11, wherein
the adapter is an integration adapter and wherein receiving
adapter-related information associated with an adapter
includes:

identifying an adapter type for the adapter;

determining an integration style for the adapter;

identifying a quality of service level for the adapter; and

capturing adapter tasks and an architecture associated
with the adapter.

13. The computer-readable medium of claim 12, wherein
determining an integration style for the adapter includes
identifying message exchange patterns that identify whether
a message is in-only or in-out.

#* #* #* #* #*

